Learning Targets

- I can construct a probability model and/or find missing values.
- I can calculate the expected value of a certain event.

Sep 30-10:02 PM

Sep 30-9:59 PM

Create a probability model of the number of pets in our class?

What's the probability of having 2 pets?

If there are 3000 students at CPHS, how many would you expect to have 2 pets?

to have 2 pets?
$$6/31 \cdot 30.00 = 580.6$$

What's the expected value of pets (average number of pets per person) in this class?

Sep 30-10:23 PM

In a random sample of 60 students at CPHS (total population 2945), 13 of them said they had a iPad. How many iPad owners would you expect to find in the entire population of CPHS?

$$\frac{13}{60} \cdot 2945 = 638.1$$

$$\frac{13}{60} = \frac{x}{2945}$$

Sep 30-10:38 PM

Expected Value - E(x)
An average of all possibilities each weighted by its probability (weighted average - because some things have more weight than others).

$$E(x) = x_1p_1 + x_2p_2 + ... + x_np_n$$

outcome	\mathbf{x}_1	x ₂	X ₃	 X _n
probability	\mathbf{p}_1	p_2	\mathbf{p}_3	 p_n

Expected Value is a Measure of Center

A game is played where a dice is rolled once. If the die lands on an even number, the player wins nothing. If the die lands on an odd number, the player wins 3 times the amount on the die. What is the expected value (average amount won per game) of this game?

$$E(x) = {}^{3}3(\frac{1}{6}) + {}^{3}0(\frac{1}{6}) + {}^{$$

A carnival game is played that has several prizes a player can win. Below is a probability model for this game:

Value	\$30	\$20	\$10	\$1
Prob	.01	.03	???.06	.9
	17%	2 1/	2.7	90%

Find the expected value for this game. What does that mean?

$$E(x) = 30(.01) + 20(.03) + 10(.06) + 1(.9)$$
$$= *3.40$$

If you pay \$2 to play this game, is it a fair game?

Sep 27-8:25 AM

A game is fair if the expected value is equal to the cost of playing the game.

Example: Suppose a casino game has an expected payout of \$1 every time it is played. A player is paid nothing 45% of the time, they are paid \$1, 35% of the time and they are paid \$3, 15% of the time. There is one more payout amount in this game.

Build a probability model. Find the missing payout amount.

Sep 27-8:28 AM

Assignment:

Section 3.1 #1, 2, 5, 6, 8-10, 12, 13

Learning Targets

- I can construct a probability model and/or find missing values.
- I can calculate the expected value of a certain event.

Sep 27-8:30 AM